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ABSTRACT

In this paper some topological transformations are designed for simplifying certain problems
involved in mechanies of structures. For each case, the main problem is stated and the proposed
topologicsl transformation is cstablished. Once the required topological analysis is compleled, a
back transformation results the solution for the main problem. Expedient transfonmations studied
here employ (1) models drawn on a plane, {2) moedels embedded into higher dimensional spaces,
(3] interchange models defined which have more simple connectivity properties than the
corresponding original structural model,

Keywords: transformation, graph theory, lopology, rigidivy, analvsis, loree method, ordering,
decomposition, configuration processing

L. INTRODUCTION

Analysis of systems and i particalar structures can be decomposad into threes phases:

L. Approximation, followed by choosing an appropriate maodel.

2. Specifying topological properties followed by a topological analvsis.,

3. Assigning algebraic variables, followed by an algebraic analysis. Such a decomposition
results in 2 considerable simplification in the analysis and leads o a elear understanding of
the struetural behaviour,

For an optimal analysis of a structure, three conditions should be fulfilled. The structural
(stiffness or flexibility) matrices should be sparse, properly structured (e.z. banded) and well-
conditioned. The latter property is not purely topological and is treated elsewhere, Kaveh [1].
Only problems relevant to sparsity and proper structuring are studied in this paper.

Pattern equivalence of structural matrices and those of graph theory simplifies structural
problems  and allows advances made in this field to be ransferred to structural mechanics. As an
example, for rigid-jointed [frames the sparsity of flexibility matrices can be provided by
construction of sparse cycle adjacency matrices. Similarly using sparse cul set hases, the
formation of sparse stiffness malrices become feasible. Proper structuring of the Hexibility and
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stiffness matrices of a strociure can also be provided hy structuring the pattern of eyele and cut
set adjacency matrices of its maodel, respectively,

This paper is devoted w the study of some structural problems in which topalogical graph
theory plavs an important role. Topological graph theory s primarily concerned with
reprosenting graphs on surfaces. An embedding or a drawing of a graph can be considered as
identification of the graph with a subset of a surface inoan appropriate Tashion. For some
problems it is beneficial to define a new graph with more simple connectivity properties than the
original model.

Some of the mathematical definitions used in this paper are presented in the Appendix. For
further concepts and definitions the reader may refer to the author's recent bool, Kaveh [2].

2. DEGREE OF STATIC INDETERMINACY OF SPACE STRUCTURES

The first step in the analysis of a structure by means of the foree method consists of determining
its degree of indeterminacy (DS1). For space structures, an ¢fficient approach can be developed
by drawing the structural model on the plane, using the two simple theorems presented in this
section,

Definitions: A drawing 87 of S is a mapping of § into a surface. The nodes of S po into distinet
nodes of 8. A member and incidence nodes map into a homeomaorphic image of the closed
wterval [0,1] with the relevant nodes. A good drowing is one in which no two members are
incident with & common point, and no two members have more than one point in common, A
commmon pomt of twe members 5 a crossing, An opltimal drowing ina given surface is one
which exhibits the least possible crossing. The number of crossing points of 5 after drawing on a
plane or a sphere, 8%, is deneted by w(8%) For cases when the drawing is optimal, v(3" ) becomes
the crossing number of the graph S,

Theorem A: For a space frame 3 the degree of static indeterminacy is given by
¥ (S)=6b (57)=6[R,(S") - v(s°)], (1)
where R{S"} is the number of intemal regions of %: i.e

B (5F)=R(5")- L (2]
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Figure |, A space frame with an arbitrary drawing
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Example - Foraspace frame depicted in Figare Lia), a drawing may be considerad as shown in
Figure 1(B). Using Eqg. (1) results in

v{R)1= 6020 -6 = 84,
Theorem B: For a space truss the degree of static indeterminacy is given by
¥(8) = w(5")- M, (5"), (3)
wlhere :'\,-'IL_{S'J] is the number of members reguired for full triangulation ol 57,

Example - A space truss S supported in a statically determinate fashion together with o drwing
S ol'S are shown m Frgure 20 Emploving Equi3) leads o
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() A double layer grid 5 (b A wbitrary drawing of 5
Figure 2. A space truss 5 and an arbitrary drawing of 8

Simple proofs of the above two theorems may be found in Kaveh [3).

Maturally it is advantageous o use optimal drawings in order to reduce the number of
countings for caleulating y(5) of structures. An optimal drawing of a structure with zero crossing
number has an attraclive property, since the cyeles bounding the finite regions of the |:l1'awiné{
form a suitable basis, known as a mesh basis,

3. RIGIDITY OF GRID-SHAPED PLANAR TRUSSES; A BIPARTITE GRAPH

The smdy of the ngidity of planar trusses is due to Laman [4], who found the necessary and
sutficient conditions for the rigidity of this type ol structures, Lovasz and Yemini [5] and
Sugihara [6] developed algorithms for controlling the rigidity. There is a special type of planar
trusses for which the rigidity can be cheeked more efficiently, Bolker and Crapo [7]. In the latter
approach, 4 bipartite graph is defined for the truss and the connectedness of this graph results in
the rigidity of the main truss,



AL Kaveh

(]
=

Consider a grid-shaped planar truss with m rows and n columns with some diagonal bracings.
Associare one vertex with sach row and one vertex with each column. Couneet a row vertex to a
column vertex if the corresponding pancl has a diagonal member, resulting in a bipartite graph
B(S). It can casily be proved that 3 is rigid if B(3) is connected. Furthermore at least m + 1 - 1
diagonal members are needed for minimal rigidity of 5.

Example - A grid-shaped planar truss s shown in Figure 3a. The bipartite graph B(S) of S s
ilustrated in Figure 3b. Since B(S) is connccted, therefore S is rigid. It can be seen that the
removal of any diagonal bracing member of S will resull in a disconnected B(S), destroying the
rigidity of 5.
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(a) A planar truss S ib) The bipartite graph B(5) of 5

Figure 3. A grid-shaped planar truss and its bipartite graph

4. CYCLE BASES SELECTION; MANIFOLD EMBEDDING

The force method of frame analvsis requires the formation of suitable statical hases
corresponding Lo sparse flexibility matrices. Due to the pattern equivalence of a flexibility matrix
of a frame and the cycle adjacency matrix of its graph model, the problem can be transformed o
the formation of a maximal set of independent cycles, known as a cyefe hasis, Kaveh [8-12]. In
order to have a sparse flexibility matrix for a frame structure whose elements have the least
overlaps  should be selected (optimal cyele basis), The formation of an optimal cycle basis is not
simple, however, such a basis is quite often in-between cycle hases of the least length (minimal
cycle hasis). There are various methods for the selection of subminimal cvele bases, some of
which will be described in the next three sections,
The process of embedding a graph S on a union of disks can be summarized as follows:

Step 1. Identify 2  planar subgraph and embed it on the first disk whose dissection is
isomorphic to the selected subgraph,
Step 2, Select  the second subgraph such that the corresponding dissection has a 2-cell with a

free l-face, and its intersection with the previous dissection is a connected subspace
of the frontier of the first disk.

Step k. Repeat the process of the second step. identifying the ith planar subgraph, whase
dissection has a 2-cell with a free 1-face and the intersection of its dissection with the
previously selected dissections iz a connected subspace of the frontier of the i0h disk,
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Repeat step koantil all members (L-cellsy of S are embedded, and the regional cyeles forming a
cycle basis is obiained,

Exumple: 5 15 a space graph as shown o Figure 4a, which is embedded on the union of three
disks K, K+ and K; as depicted in Figure 4b,
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{a) aspace graph 5 (b} the selectad disks
Figure 4. A space graph and the wdentlified disks

[n order {o reduce the overlaps of the selected cycles, it is ideal to embed S on a minimuom
number of disks, This number is known as the dhicknesy of the graph. However, the restrictions
unposed, and  the lack ol eMiciency of the availahle methods for embedding, reduces the chance
of the minimality of such an embedding, Kawveh [2].

5. CYCLE BASES SELECTION; A MANIFOLD EMBEDDING

The planar embedding of a graph, results in a set of independent regional eyeles forming a mesh
fagis . However, for non-planar graphs  other embeddings should be employed. A manifold
embedding s an example of this kind. A cycle basis can be obtained by embedding S onan
admissible manifold, Henderson and Maunder [13]. An orientable manifold may be viewed as an

eycles, 2k fillings and one perforation of order 2 should be made, resulting in an admissible
manitold embedding.

Example - A hellow box 5 is considered as shovn in Figure 5a, which is embedded on a sphere
with one handle. Therelore two fillings (shaded) and one perforation have been considered,
Frgure 5h, The selected cvele basia consists ol 79 four-sided cyoles and teo eight-sided oyeles.

In manifold embedding the quality of the selected cyele basis depends on the number of
handles being used. It is ideal to embed 3 on a sphere with minimum nomber of handles. This
number 15 known as the genus of the graph. Again there is no efficient method for such an
embedding, Kaveh [14].



AL Kaveh

{a) A space structure 5
Figure 5. An admissible manifold embedding of S

™y

- P

T o Y

s

~ A

{ P : o
Y __.' .___.-"

.--"'- T

(b) A manifold embedding

6. CYCLE BASES SELECTION; COLLAPSIBLE EMBEDDING

A praph can be viewed as the [-skeleton of a 3-complex. An n-cell is called collapsitie if it can
be shrunk into the reminder of its n-1 cells through & free n-1 eell. [Fa 3-complex can be
collapsed into a point, then it is called coflapsitde. It can be proved that a collapsible 3-complex
can be vsed for the formation of a cyele basis of s l-skeleton. This ean be achieved by
collapsing all the 3-cells through free 2-cells or 2-cells being freed in subsequent steps, Maunder

[15].

Example - Consider a space structure as shown in Figure 6(a). This graph can be viewed as the
l-skeleton  of & 3-complex as depicted in Figure 6(h). Afler collapsing all the 3-cells through the
shaded 2-cells, the bounding cyeles of the remaining 2-complex {16+ 0=24=256 cyeles) form a

cyele basis of 5.

{a) A space structure &
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(b) S embedded on a 3-complex

Figure 6. A space structure and its collapsible embedding

7. GENERALIZED CYCLE BASES:; INTERCHANGE GRAPH

For a general skeletal structure, a statical basis can be formed on a maximal set of subgraphs
deflined as a gemeralized cvele basis (GCB) of S, Kaveh [16]. Such a basis has been defined as
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the consequence of generalizing the first Betti number b (5) = M(5) - N{8) + b (5} to v,(5) =
aM(S)y + BMN{S) + oy, (5).The Tormation of a peneralized cvele basis, in general, can be time
consuming, However, for planar trusses the problem can be simplified by using a special graph,
known as the inferchange graph. An interchange graph (S) of S is a graph whose vertices are in
a l-to-1 correspondence with the wiangular regions of 5 twhen 8 15 embedded inthe plang) 2nd
two nodes are connected by an edge if the corresponding triangles have a comumaon member,

In order 1w lform a gencralized eyele basis of 5, one can generate a eyvele hasis of I{5), and
with a back transformation the elements of the gencralized cycle basis can then be obtained,
Kaveh [13].

Example - A planar truss as shown in Figure 7(a) s considered. The interchange graph of S 14
formed as  depicted in bold lines in the same figure. A cyele basis of [(5) consists of 11 regional
cycles leading to [8 subgraphs forming a GCB of S, On each subgraph one self-equilibrating
stress system (5.E.55) can be constructed, corresponding to @ switable statical hasis.

() A planar ross ib] The interchange graph

(¢ ) Typical elements of the GCB
Figure 7. A planar truss and typical clements of the selected GCR

The regions of $ after embedding in the plane does not need to be all triangulated. For such
maodels, however, different types ol cyeles for 15) should be employved, Kaveh [2].

8. CYCLE AND GENERALIZED CYCLE BASIS ORDERING; AN ASSOCIATE
GRAPH

In order to reduce the bandwidth of the flexibility matrix of a structure, the bandwidth of its
generalized cycle basis adjacency matrix can be reduced. For this purpose the asseciare graph of
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the selected basis should he constructed. Such a graph has its vertices in a 1-to-1 correspondence
with the elements of the selected basis, and two vertices are connected by an edge if they have a
member in common. This araph can also be used for orderving the elements of a null basis
cmployed in algebraic force method, Kancko et al [17]

Example - Let S be aplanar graph as shown in Figure 8(z). Using the author's cycle selection
algorithm [18], the following cycles are selected as a basis:

The assaciate graph of this basis is depicted in Figure 8(b), Using a nodal ordering algorithm
{see [or cxample Kaveh [19]) the node of A(C), hence the order of the cycles is obtained.
Forming three 5. E.Ss on cach cyele vields a statical basis corresponding to a banded flexibilicy
atrix. It should be noted that the selected cveles of a graph need not be regional cycles mesh
basis), and the associate graph can easily be considered for any other type of cycle basis,

!
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{a) A simple graph 5 (b} The associate graph of the cycle basis
Tigure 8. Graph 5 and the associate graph of the selected cycle basis

9, GRAPH MODELS OF FINITE ELEMENT MESHES

In order to transform the nodal numbering of a finite element mesh into the graph nodal
ordering, ten algorithms are presented in this section, Refs [3-4].

9.1 Element cligue graph method (ECGM)
Definition: The element cligue graph S of a FEM, is a graph whose nodes are the same 23 those
of the FEM and two nodes nj and nj of § are connected with a member i iy and 1 belong to the

sames element in the FEM.

Figure 9. A FEM and its clement clique graph.



EXPEIMENT TRANSFORMATIONS (M STREUCTURAL MECHANICS 2bh

YoI Bhedeion pragl sethod (SRGM
Definition: The 1-skeleton graph (shefoson grapfs 5 of a FEM. (s a araph whose nodes are the
same s those af the FEM, and itz menshers are the membaers of the FEM.

Figure [0 The skeloton graph of the FEM

Y3 Element siae graoh wethod (E50G M)

Drefinition: The efement siar graph S ol a FEM has two set of nedes: namely the main set
containing the same nodes as those of the FEM and the vinal set consisting of the virtual nodes
inoa  one-to-one correspondence with the glements of the FEM. The moember sct ol 8 s
constructed by cennecling the virtual node of each clement 1 o all nsdes of the elament i
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Figure 11 The elemen: star graph of the FEM

U Elewrens whee! geaoh method (V)

Befinition. The elesent wheel graph S ol a FEM s the umoen ol the element star graph and the
skeleton graph of the FEM. The element wheel graph of the FEM shown in Figure $a) s
divstrated m Frgure 120 The virtual nodes are shown by bigger dots.

Figure 120 The alement wheel graph of the FEM
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D3 Porvialiy tricondaied graph method (PTG
Defnition: The pavsially tiangnioted grapd S ol a FEM 15 2 wraph whose nodes are the same s
those of the FEM and a selected node ol cach clement ©is connectad to all the nodes ol

e
H::‘—-
'
- 1 I L]
[
{2} The skeleton graph and an SRsubtrec of the FEM i) The partially angolaled oraph

Figure 13, The partially triangulated graph of the FEM

S Privnpadated peopls aetiod CERGA)
Definition: The fiangedated graph 5 of o FEM is the anwon of the purtially riangolsled graph
aph of the FEM.

and the skeleton g

Figure 14 The triangulated sraph ol the FEWM

0.7 Natral associare praph method (NAGAM

Definition: The wsaturs! associoe graph 5 of & FEM haz it nodes in 2 one-lo-one
correspondence with eloments of the FEM, and two nodes of S are connected by a member if the
corresponding clements have a common boundary. The natural associele graph of the FEM
showr in Froure 9(a) s illustrated m Figore 15

- *jj

Firure 15, The natural associale graph ol the FEM
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WA fncidence graph prethod (NG
Pefinition: The incidence grapdi 5 ot o FEM has its nodes ina one-to-one correspoondence with
the clements ol the FEM. and two nodes are connected with @ member i8the comresponding

clements have o cormmon node.

Frgure 16, The incidence graph of the FEM

S Represenioiive sraph method (RECGM)

Definition: Consider the sleleton graph and sclec
algorithm available {e.g. an algorithm of Refs [ 3-4]) The nearest comer node of &
the FEM is taken as the representative node of that element, The SRsubtree of the skeleton graph
of the FEM comaiming all representative nodes of the clements is called u represeaictive gragh S

anoappropriate starting node. using any
soh element of

of the FEM.

Lo '

Figure 17 The representative graph of the FEM
P Complete vepresentoiive graplt method (REG M)
Definition: This graph s the same ws REG with additional members connecting ench pair af
nades in CREG T their corresponding nodes in the FEM are contained in the same element.

Frgure 18, The complete representztive graph of the FLEM
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(S and the selected cveles (b Ketotal graph ol S
Frgure 240, Member and evele ardering of a graph

12, DUALITY OF CYCLE BASES AND CUT SET BASES: A DUAL GRAPH

The dual graph of a graph has many applications 1w mathematics and engineering. The dheal
arael DSy ol a planar eraph has us verlices in a onc-lo-one correspondence with the regions of
5 twhen embedded in the plancy and two vertices are connected with an cdee of S 1 there 15 o
commaon member in thedr boundary . Naturally the number ol edges and vertices of INS) are the
same s the numbers of membors and regions of S, respectively, 18]

A gvele basis of 5 corresponds (o a cut set basis of D5} and vice versa. This property makes
the elMizient generation of ane basis from the other one feasible by a simple transformation.

Example- A planar graph 5 iz shown in Figure 2100 with its dual araph given o bold lines. A
typical cvele of 5 and the correspanding cut set are depicted in Figure 210by The duality for the
graph madel of a planar truss and s Moswell diagram 5 an ieresung problem m strucleral

muechanics

fay A planar graph 8 and 11 dual (b T pical evele and cut set
Figure 21, A planar graph and s dual graph

13. CONFIGURATION PROCESSING

The mathematical models of a practical stracture can often be generated by using its repeated
woits cmploving franslation. rolaven, deflection or combinations of thase funciions. Such @ unit
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can eastly be represented moan integer coordinate systom. Onee the whole model s formed, o
simple transformation can map the generated model into the structural moeds! containing is
geometrical information (Kaveh [2] and Nooshin [23])

Example - Consider a grid 5 as shown i Figure 22(a). generated in an intgeer coordinate svstem
and transfonmed 10 real coordinate svstem b the following transformation:

N = 2[
anl v = 2]

TS
385

XKL
e

{a) A planar grid S (Ref [23])
Using the ransfonmation as
¥ =3[,
ani y =2 50

leads to the following configuration, Figure 22(h).

(b A scaling transformation

Mow apply the followime funchons nsme g polar coordmale svslem;
[ = Ll 3

B=d, - DL and r=1, +9.
20 :
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Tlas beacds 1o ard as shovwn m Fraure 22,

fcy A polar coordinate transformation of 5

Sunilarly applving the followmg translormation  leads to a barrs] tvpe of space structure as

shown in Figure 220d). Refll [23].
= ™
r=30, 0 I;.-j-—- and » =41,

idy A evhindrical tramsformation of 8
Figure 22, A grid and its transformations 23]

14, CONCLUDING REMARKS

A collection of topolegical transformations is presented loc the study of topological properties of
struclures. These wansformations  provide  useful tocls for optimal analysis of struclures,
however, not all the transformations necessarily provide the best possible solution for the

corrgspending problem. Az an example. a suitable cvele basis of a graph for the Nexibility
analvsis can more efficiently be gencrated using the author's expansion process, [2.%]. Tt is hoped
that other ranstormations can be Tound and better classifications can be made.
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APPENDIX: DEFINITIONS FROM GRAPH THEORY

In arder o deseribe the coneents and methods o s paper moa sell=contzimed manner, o momber
of defimitions we presented o the following:

Aograpft B oconsists ol s selof clements cnlled nedes Dverticest and o oset of lements called
meachery (edges), wgether with a relation ef meidenee, associating two distinet nedes with cach
membaer. A graph is ecalled cosmecred i overy pair ol its nodes Is joined together by a path, A
sabeapl of 508 2 graph having all ds nodes  and members 1n 5. Two nodes of 5 ave called
geffocens 1 these nedes are the end nodes ol member. A momber 15 incicdens toon node 1 the

nete s an end node of the momber,
s o fmite sequence of alternately distnet nodes and members of the graph

becomes o ovode 1 the [est node and the Dnst node ol the path comeide A cef wed s 0 selof

A path

members o5 such that the removal of these members from 5 cesults inoo disconnected graph,

Aomaimal sel of mdepoendent cwvelos (out saish s knewn as e ovefe fene sen! dasiy ul 5, The
cardinality of o cvele basis s the same as the Nirst Bews number By 051 = M%) - N5 - boishol
Soowhers MESY, NiSE and b (S) are the nuwmber ol members, nodes and components o' S,
respectively, A orele adiocescy mairi 15 a IS )= b US matrx consisting of O and 1 enlries. An
entry 1% 1 AF The corresponding eyeles have ab least o mombor in common and O otharwise. A o
sef adiiicency marrin has NISY - b (S) columns and rows, and is defined analogously.

Aogmaph s called planar i1t can be embedded in the plane with ne members crossing coch
cther A hipantite graph consists of tao sois of nodes A and B such that anly the nodes aof A are

guaned w1 nodes of B by mombers of the graph. Aowraph is ealled ofiguee iFall of iz nodes are

connected wanch other,





